Showing posts with label DMLS. Show all posts
Showing posts with label DMLS. Show all posts

Sunday, March 31, 2019

Fun with Machines that Bend

I really like his 3-D printed titanium part at about the 8 minute mark, and the chainsaw clutch at minute 10 is pretty neat too.


The eight "P's" of compliant mechanisms:
  1. Part count: reduced parts count with bending parts instead of hinges and springs
  2. Production processes: lower price through processes like injection molding
  3. Price: lower because of reduced parts count and affordable processes with reduced assembly
  4. Precise motion: no backlash (yea!),
  5. Performance: no need for lubricants, reduced wear
  6. Proportions: can be made at small scale with photolithography
  7. Portable: lightweight
  8. Predictable: the operation of the mechanism can be well-known and reliable

Wednesday, July 6, 2016

Exciting 3D Print Service Developments

It has never been easier to go from a design in your head to parts in your hand. The barriers to entry are low on the front end. There are all sorts of free and open source drawing, mesh editing, modeling or CAD applications. On the fabrication end of things, services like shapeways, and imaterialise continue to improve their delivery times, material options and prices.

One of the recent developments that deserves some attention is in metal 3D printing. imaterialise has offered parts in DMLS titanium for a while, but they've been pretty pricey. They have now significantly reduced the prices on Ti parts, and are now offering a trial with aluminum. Not to be left out, Shapeways has graduated SLM aluminum from its pilot program.

It's great to see such thriving competition in this space. I'm working on some models specifically for this metal powder-bed fusion technology. What will you print?

Wednesday, May 28, 2014

SpaceX SuperDraco Made with DMLS

SpaceX completes Super Draco Qual
From the press release:
The SuperDraco engine chamber is manufactured using state-of-the-art direct metal laser sintering (DMLS), otherwise known as 3D printing. The chamber is regeneratively cooled and printed in Inconel, a high-performance superalloy that offers both high strength and toughness for increased reliability.

“Through 3D printing, robust and high-performing engine parts can be created at a fraction of the cost and time of traditional manufacturing methods,” said Elon Musk, Chief Designer and CEO. “SpaceX is pushing the boundaries of what additive manufacturing can do in the 21st century, ultimately making our vehicles more efficient, reliable and robust than ever before.”

Monday, September 17, 2012

DMLS Wind Tunnel Models

Additive manufacturing, sometimes called direct digital fabrication or rapid prototyping, has been in the news quite a bit lately. I wrote a post recently for Dayton Diode about the many additive manufacturing options available for fabricating functional parts or tooling in response to comments on a piece in the Economist, and commented recently on Armed and Dangerous in a discussion about 3D printed handguns. There are just so many exciting processes and materials available for direct digital parts production today. Some of the work I've been doing recently to qualify one particular additive process for fabricating high-speed wind-tunnel models (abstract) was accepted for presentation at next year's Aerospace Sciences Meeting.

We used Direct Metal Laser Sintering (DMLS) to fabricate some proof-of-concept models in 17-4 stainless steel. DMLS is a trade name for the selective laser melting process developed by EOS. The neat thing about DMLS (and additive processes in general) is that complicated internal features like pressure tap lines can be printed in a single-piece model. Being able to reduce the parts count on a model to one while incorporating 20 or so instrumentation lines (limited only by the base area of our particular model) is really great, because one part is much faster and less expensive to design and fabricate than a multi-component model with complicated internal plumbing. The folks down at AEDC are also exploring the use of DMLS to fabricate tunnel force and moment balances for much the same reason we like it for models and others like it for injection mold tooling: intricate internal passages, in their case, for instrumentation cooling and wiring.